This slide is intentionally blank

(The AV guys always keep getting upset with me if I don't put this on my blank slide before my talk. They think their projector is broken.)

IBM Internet Security Systems

The Brave New World of IPv6.

Michael H. Warfield

mhw@linux.vnet.ibm.com

Outline

Introduction to IPv6
State of IPv6 Deployment
IPv6 Addressing
Transition Mechanisms and Tunnels
System and Application Support
Summary and Conclusion

Introduction

- IPv6 the "next generation" Internet protocol
- Under development for many many years
- In production for many years
- Largely ignored in areas rich in IPv4 addresses
- IPv6 addresses limitations in IP version 4 (IPv4)
 - -IPv4 addresses are limited to 32 bits
 - Routing tables are taxing routers
 - -Networks and subnetworks are ad-hoc
 - Allocations are disorganized
 - —Initially no security features on the IP layer with IPv4

IPv6 Overview

- Expands addresses to 128 bits
- Formalized address boundaries
- IPSec (backported to IPv4)
- Quality of Service (QoS) typing
- Stateless as well as stateful autoconfiguration
- Provides for dynamic network address renumbering
- Rich set of transition tunnels and translators
- Robust resistance to brute force scanning
- Has no broadcast addresses

Paradigm Shift

- Contrary to popular belief IPv6 is NOT merely IPv4 with fat addresses
- IPv4 allocations were a paradigm of scarcity
 - -Use of dense allocations to optimize utilization
- IPv6 allocations are a paradigm of abundance
 - Use of sparse allocations to optimize versatility
- Best practices in IPv4 may not be best practices in IPv6
- Best practices for IPv6 may not have been best practices for IPv4
- Even if IPv6 were IPv4 with fat addresses (which it's not) it couldn't be because of the paradigm change

IPv6 Deployment

- Provider deployment in North America & Australia was relatively slow but has been getting a lot better
 - A few tunnel brokers
 - –Some ISPs provide native support
- Very Common in Europe
 - -Many native ISP's plus some tunnel brokers
 - -RIPE has had more allocations than the rest of the world
- Widespread adoption in APAC
 - -Many IPv6-only networks
 - —At least one IPv6-only ISPs China

Transition Mechanisms

- Promote IPv6 adoption and interoperability
- Mapped addresses aid IPv4 IPv6 communications
- IPv6 can be tunneled over many other protocols
 - -6in4 / SIT (Six in Tunnel)
 - -6to4 Automatic 6in4 / SIT tunnels
 - -6over4 and multicast
 - –IPv6 over UDP (Teredo, TSP, AYIYA, OpenVPN)
- Proxy Servers, Services, Protocol Bouncers
- DSTM and 4in6 (IPv4 tunneled over IPv6)
- Translators (NAT-PT / TRT)

Providers

- Tunnel brokers provide IPv6 access across IPv4 networks
 - -FreeNet6 <freenet6.net> North America
 - -Hurricane Electric <tunnelbroker.net> NA, EU, APAC
 - –OCCAID <occaid.org> NA, EU (now partnered with SixXs in US)
 - -SixXS <sixxs.net> EU, NA (with OCCAID)
 - -AARNet

 broker.aarnet.net.au> Australia
- Some providers supply native IPv6 in North America
- Comcast is using IPv6 to manage cable devices
 - End customer delivery is in beta
 - Beta had to be closed due to demand!

Tunnelbroker.net

- Hurricane Electric tunnelbroker.net, he.net
- One of the earliest US adopters and tunnel brokers
- Based in California
- Now sports an international IPv6 backbone
- POPs all over US, Europe, plus Singapore and Australia
- Provides static 6in4 tunnels (manual reconfiguration)
- Free /48 and /64 networks
- BGP feeds and peering available
- Excellent free "Certification" quiz open to anyone!
- Extensive IPv6 support forums

Freenet6

- Hexago freenet6.net, hexago.com, gogo6.com
- Based in Canada
- Provider of major tunnel broker servers for dynamic tunnels
 - –TSP Tunnel Setup Protocol
 - -Good for road warrior tunnels from anywhere
- Static and dynamic 6in4 tunnels
- IPv6 over UDP
 - -Free OpenSource tunnel client for many platforms
 - Best tunnel broker in NA if you are behind a NAT!
- Free /56 networks

OCCAID

- Consortium of IPv6 developers and networks www.occaid.net
- Over 10 countries in EU plus North America
- Points of presence throughout the US
 - -Several POPs in Atlanta
- Static 6in4 tunnels (manual endpoint reconfiguration)
- Free /64 and /48 networks
- BGP peering available (and may be required for some tunnels)
- Now partnered with SixXs to provide end user service

Some IPv4 Guesstimates

- IPv4 host addresses 4 billion total 0.0.0.0 255.255.255.255
- IPv4 networks (pure guesswork)
 - -If all of IPv4 space were /24 nets 16 million
 - -If all allocated space were /24 nets ~ 9 million
 - -Old estimate of broadband and DSL accounts 30 million
 - -Best wild guess 8 million to 30 million
 - •Do you count grandma's wireless router as a network?
 - Not all IPv4 addresses have NAT networks
- IPv4 core routes (from BGP) > 340,000 (varies with view)
- Routable IPv4 addresses (1/20/2011) 2.4 billion
- APNIC CIDR Report

Some IPv6 Statistics (recent)

- IPv6 advertised networks (non-transition)
 - -lgnore 2001::/32 (Teredo)
 - -Ignore 2002::/16 (6to4)
 - -Ignore 3FFE::/16 (6 Bone now defunct)
- IPv6 core routes <4000 routes in BGP</p>
- IPv6 routable /48 networks 180 trillion
- 10 trillion networks in /32 provider blocks (ISP blocks)

IPv4 Address Exhaustion

- Only 7 /8 provider blocks left at IANA
- Next request will trigger allocation of everything left
- Current IANA Exhaustion Estimate: February 2011
- Current RIR Exhaustion Estimate: October 2011
- UK expects to be out of customer IPv4 addresses in early 2012
- Efforts to extend IPv4 has created NAT and now CGN
 - -Carrier Grade NAT aka NAT444
 - –NAT at the ISPs
 - -Customers will not even have global IPv4 addresses
 - -VPNs and some games and protocols will break!

Addresses

IPv4

- -32 bits 4 billion addresses
- -4 8-bit decimal octets, 0-255
 - www.wittsend.com: 130.205.32.64
- -Variable size subnets

IPv6

- -128 bits 3.4 * 10^38 addresses
- -8 16-bit hex fields, 0-FFFF
 - www.ip6.wittsend.com: 2001:4830:3000:2:260:8ff:40ce:7322
- -Fixed subnets (/64), and networks (/48)

TLA / NLA / SLA / EUI

- TLA: Top Level Aggregator
 - -First 16 bits
- NLA: Next Level Aggregators (Sub-TLA / NLA)
 - -Second and third 16 bit fields
 - -Variable field spliting between RIRs (registries) and ISPs
- SLA: Site Level Aggregator IPv6 subnet ID
 - -Fourth 16 bit field
 - -Some providers are spliting this field for suballocations
- EUI: End Unit Identifier Host identifier
 - -Lower 64 bits
- tttt:nnnn:nnnn:ssss:eeee:eeee:eeee

IPv6 Global Addresses

- IPv4 Compatible: ::0000:n.n.n.n
 - -IPv6 node to IPv6 node over IPv4 tunnel
 - -Now Deprecated
- IPv4 Mapped: ::FFFF:n.n.n.n
 - -IPv4 node to IPv6 node over IPv4
- Global Unicast: 2000::/3 (2000: -> 3fff:)
 - -Each /16 has as many IPv6 networks as there are IPv4 addresses
 - –V6 Internet: 2001::/16, 2003::/16 2fff::/16
 - -Teredo: 2001:0::/32
 - -6to4: 2002::/16 (6in4 protocol 41)

IPv6 Local Addresses

- Unique Local Addresses (ULA): FC00::/7
 - -FC00::/8 Centrally administered assignments (CULA)
 - -FD00::/8 Locally administered assignments (LULA)
 - -40 bit "random" global id + 16 bit SLA + EUI
 - —Should not be propagated between networks / sites
 - -Replaces deprecated Site Local (FEC0::/10) addresses
- Link Local: FE80::/10
 - -Must not be propagated across subnets
 - –Not unique within site
 - -Multi-homed devices also must specify interface
 - Use for link local discovery and advertisements

IPv6 Multicast Addresses

Multicast FF00::/8

-Interface local: FF01::/16

-Link local: FF02::/16

-Site local: FF05::/16

-Global: FF0E::/16

Services:

-All nodes: FF0[12]::1 Interface(If)/Link

-All routers: FF0[125]::2 If/Link/Site

-NTP: FF0[125E]::101 If/Link/Site/Global

-DHCP: FF0[25]::2:2 Link/Site

Never allowed as a source address

"Standard" allocations

- IANA / IETF recommendations
- Standards? We have lots of standards...
- /65 /128 P2P or internal peering (special cases)
- /64 Sites with a single subnet
- /56 Non-standard allocations of 256 subnets
- /48 Sites with multiple subnets
- /32 ISP Provider block "minimum" routing granularity
- /23 /16+ RIR allocations

EUI-64

- EUI is the lower 64 bits of an IPv6 address
- EUI-64 Based on the interface MAC address
- EUI-64 Remains constant over renumbering
- Remains constant across subnets
- Potential privacy issues
- Potential network mapping issues
- ::mmMM:MMff:feMM:MMMM (M=Mac address)
 - -Invert one bit
 - –Split address in half and insert "fffe"

Privacy Enhanced Addresses

- Random non-conflicting EUI addresses
- EUI changes from boot-up to boot-up
- EUI may change over time
- Multiple EUIs may be assigned and overlap
- Network mapping prevented (sort of)
- Node tracking prevented (even site local node tracking)
- Troubleshooting and tracing is very difficult
- P2P users will love privacy enhanced addresses

Other EUI Addressing Schemes

- They're your addresses. Do with them what you will.
- Standards like EUI-64 are options
- Some are more scannable than others
- Addresses can be picked at random
 - -Neighbor discovery detects any extremely rare collisions
- Addresses can be changed periodically
- Can use mixed / different methods on different subnets
- Addresses can be assigned by cryptographic formula
 - -Client authentication by EUI check?
 - -Filtering on source address by hash code?

Stateless Autoconfiguration

- Allows for auto configuration of IPv6 addresses
- Allows for dynamic renumbering of prefixes
- Subnets may have multiple perimeter routers
 - Different prefixes
 - Different lifetimes
 - -Different preferences
 - -Route lifetime can be used to set prioritized default routes
- Interfaces may have multiple global addresses
- Rogue routers may inject IPv6 routes on IPv4 nets
- Rogue routers may interfere with IPv6 routers

6in4 / SIT Tunnels

- 6in4 (aka SIT) Transition Tunnels
 - -On *BSD these are referred to as GIF tunnels
- Simple Internet Transition / Six In Tunnel
- IP Protocol 41 (ipv6) IPv6 encapsulated in IPv4
- Basis for several IPv6 tunnel schemes
 - -Static SIT tunnels use preconfigured endpoints
 - -6to4 automatic tunnels employ formated v6 addresses
- Can pass "many" IPv4 NAT devices (proto 41 forwarding)
- Many tunnel brokers provide IPv6 through SIT tunnels
- Some tunnel brokers adapt to dynamic addresses

6to4

- Automatic 6in4 / SIT tunnels
- 2002::/16 Prefix
- Uses TLA/NLA/SLA/EUI scheme
- An IPv6 network assigned to each IPv4 address
- No tunnel broker required
- 2002:{IPv4_ADDR}::/48 Network
- Gateway IPv4 address is the NLA
- Autorouted on IPv4 by the NLA address
- 192.88.99.1 Anycast Gateway to other TLAs

Teredo / Shipworm

- IPv6 over UDP (default port 3544/udp)
- Intended to provide IPv6 tunnels over IPv4 NAT devices
- Both endpoints may be NATed and/or firewalled!
 - Can bypass most firewalls (uses outbound UDP sockets)
 - -Uses a robust NAT traversal similar to STUN (RFC 3489)
 - -Provides peer-to-peer IPv6 connectivity for clients over NAT devices
- Clients requires a Teredo server and relay on public IPv4
- Miredo project provides Teredo on Linux and FreeBSD
- IANA assigned address prefix 2001:0::/32
- IETF Standard RFC 4380

OpenVPN

- VPN over UDP (assigned port 1194/udp old 5000/udp)
- Popular VPN that works over NAT and through firewalls
- Was used by the "Join Project" tunnel brokers in Germany
 - -Join Project was disbanded with the availability of native IPv6
- SSL/TLS authentication
- ESPinUDP (IPSec- NAT-T encapsulation)
- Direct VPN of IPv6 over IPv4
 - -Currently in peer-to-peer mode only
 - –Multi-client server mode expected soon
- Clients for Windows, Linux, *BSD, Mac OS/X, Solaris

IPv6 Only Networks

- IPv6-only networks are possible and are even deployed
- DNS munging handled by totd
 - -"Trick or Treat Daemon"
 - -Translates DNS A records into AAAA records
 - -Early 2004 showed over 600 instances of totd as DNS servers
 - Each server represents at least one IPv6 only network
 - Represented over 2000 domains
- Some older MS protocols still require some private IPv4
- IPv6 to IPv4 handled by proxies and translators
- Can mix IPv4 private with IPv6 global
- Registrars must provide IPv6 glue in nameserver records

Microsoft Windows Support

- Windows Vista & Windows 7 Got it Cannot disable it
- Windows XP Native support Got it Just turn it on
 - –No need to reboot after installing (most of the time)
- Windows 2003/2008 Server Native support
- Windows 2000 (SP1 and above) Patch from MS
- Windows NT 3rd party patches
- Windows 95 & 98 3rd party support

Unix / Linux Support

Linux (most modern distributions)

- -All kernels since 2.1.8
- -Firewall support for IPv6 in 2.4
- -Fedora Core 2 Enabled IPv6 BY DEFAULT (by accident)
- -Fedora 8 and above very difficult to disable (by intent)
- -Major recent Linux distros certified for OMB IPv6 compliance

Unix

- –FreeBSD / OpenBSD / NetBSD
- -Solaris / Solaris x86 version 8 and higher
- -AIX 4.3 and up
- -HP/UX 11i and up

Other Systems and Devices

- Apple Mac OS X
 - -Enabled by default
- Airport Extreme Wi-Fi Basestations
- Linux based Wi-Fi Basestations & DD-WRT firmware
- Novell Netware 6
- Routers
- Cell Phones
 - –Android on WiFi!

The Google Survey

- Goggle conducted study to test for IPv6 clients
- "Enrolled" small fraction of visitors to www.google.com
- .238% of clients would use IPv6 when offered
- Half of IPv6 clients are Mac
- Country rankings:
 - -Russia 0.76%
 - -France 0.65%
 - -Ukaine 0.64%
 - -Norway 0.49%
 - -United States 0.45%

DNS

- Domain Naming Service / Bind
- IPv4 has "A" records
- IPv6 has "AAAA" records
- Hosts may have mix of A and AAAA records
- IPv4 uses reversed octets for reverse lookups
- IPv6 uses reversed hex nibbles
- 6to4 (2002::) reverse lookups are not available

host alcove.wittsend.com alcove.wittsend.com has address 130.205.12.10 # host 130.205.12.10

10.12.205.130.in-addr.arpa domain name pointer alcove.wittsend.com.

host -t AAAA www.ip6.wittsend.com

www.ip6.wittsend.com has AAAA address 2001:4830:3000:2:204:8ff:fe00:1151

host 2001:4830:3000:2:204:8ff:fe00:1151

1.5.1.1.0.0.e.f.f.f.8.0.4.0.2.0.2.0.0.0.0.0.0.3.0.3.8.4.1.0.0.2.ip6.arpa domain name pointer www.ip6.wittsend.com.

IPv6 Now!

- IPv6 is in active production and utilization right now!
- Many root name servers have IPv6 addresses
 - Now published in the root zone.
- Registrars are now supporting IPv6 nameserver glue records
- Regular IPv6 DNS server-to-server traffic even for IPv4 queries
- Regular E-Mail delivery over IPv6
- Regular traffic to IPv6 web servers over IPv6
- Lots of Linux repositories on IPv6
- IPv6 enabled bittorent clients are in service and IPv6 bittorent servers and seeders are deployed

IPv6 Everywhere!

- IPv6 is available anywhere IPv4 is
 - –Native
 - -Tunneled directly over IPv4
 - -Tunneled over UDP (over NAT) or other VPNs
- Vacations, resorts, hotels
- Conferences all over the world
- 5 Cruise ships at sea
- 1 Aircraft in flight
- Over cell phones and MiFi tethers

IPv6 Today!

Get on IPv6 tonight!

Autotunnels

- -Turn on 6to4 on almost anything
- -Teredo on Windows or Miredo on Linux and BSD
- -Airport Extreme, Linux routers, DD-WRT firmware

Brokers

- -Freenet6 (NAT & UDP)
- –Hurricane Electric / Tunnelbroker.net
 - Get your certification!
- -OCCAID / SixXs
 - Local to Atlanta (low latency)

Providing IPv6

- To provide IPv6 to a network, you must support it
- Tunnels should be terminated security perimeters (firewalls)
- 6to4/6in4 should be prohibited within a corporate network
- Native IPv6 should be provided within the corporate network
- Router advertisements should be monitored for anomalies
- Prefixes should be monitored for expected changes
- Unusual router advertisements should be investigated
- IDS systems should detect rogue routers and prefixes
- Avoid trivial EUI addresses where and when possible

Avoiding IPv6

- To avoid having IPv6 on a network, you must support it
- Tunneling protocols and transports should be blocked
 - —At all security perimeters
 - —At routers and subnet boundaries
 - –Across all VPNs
- IDS / IPS systems should monitor for IPv6 protocols
 - Neighbor discovery
 - -Router advertisements
 - –NIDS systems should detect IPv6 native and tunneled
 - -Host systems should be monitored for IPv6
- Most new systems will have IPv6 enabled by default!

Ignoring IPv6

- If you don't provide or prevent IPv6, you will have IPv6
 - -You won't control it
 - -You won't recognize it
 - -You won't be managing it
 - —It will still be globally addressible
 - It will still be fully routable (independent of IPv4 routing)
 - -Others will be providing IPv6 routes and routers, not you
- Others providing IPv6 will not have your best interest at heart
 - Users bypassing restrictions
 - Intruders securing backdoors
- You might even be broken, now!

Welcome to the Brave New World of IPv6

- Ready or not, here it comes^H^H^H^H is!
- IPv6 is supported on most common platforms
- IPv6 can be used over most existing networks
- IPv6 is easy to set up
- IPv6 is easier and cheaper to provide than prevent
- IPv6 is ready for you
- Are you prepared for IPv6?

The brave new world of IPv6

Copyright © 2003 David Farley, d-farley@ibiblio.org http://ibiblio.org/Dave/drfun.html

This cartoon is made available on the Internet for personal viewing only. Opinions expressed herein are solely those of the author.

Thank you very much!

44 The Brave New World of IPv6 01/20/2011 © 2011 IBM Corporation

IPv6 Resources

- <http://www.ipv6style.jp> (English)
- <http://www.ipv6.org>
- <http://www.6bone.net>
- <http://www.nav6tf.org>
- <http://www.linux-ipv6.org>
- <http://www.sixxs.net>
- <http://www.tunnelbroker.net>
- <http://www.gogo6.com>
- <http://www.occaid.org>

IBM Internet Security Systems

The Brave New World of IPv6.

Michael H. Warfield
mhw@linux.vnet.ibm.com
mhw@WittsEnd.com